
EMBEDDED TEST SOLUTIONS

USER’S MANUAL

Overton Instruments, Inc
5431 Auburn Blvd. #196
Sacramento, CA 95841

www.microATE.net

SF-MATE

8-CH, SHORT CIRCUIT
Measurement Module

SF-MATE USER’S MANUAL

www.sf-mate.info Overton Instruments 2

NOTICE The information contained in this document is subject to change
without notice. To the extent allowed by local law, Overton Instru-
ments (OI), shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the fur-
nishing, performance, or use of this material. No part of this docu-
ment may be photocopied, reproduced, or translated to another
language without the prior written consent of OI.

WARNING The instrument you have purchased and are about to use may
NOT be an ISOLATED product. This means that it may be sus-
ceptible to common mode voltages that could cause damage to
the instrument. SUCH DAMAGE IS NOT COVERED BY THE
PRODUCT’S WARRANTY. Please read the following carefully
before deploying the product. Contact OI for all questions.

WARRANTY OI warrants that this instrument will be free from defects in materi-
als and workmanship under normal use and service for a period of
90 days from the date of shipment. OI obligations under this war-
ranty shall not arise until the defective material is shipped freight
prepaid to OI. The only responsibility of OI under this warranty is
to repair or replace, at it’s discretion and on a free of charge ba-
sis, the defective material. This warranty does not extend to prod-
ucts that have been repaired or altered by persons other than OI
employees, or products that have been subjected to misuse, ne-
glect, improper installation, or accident. OVERTON INSTRU-
MENTS SHALL HAVE NO LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND ARISING OUT OF
THE SALE, INSTALLATION, OR USE OF ITS PRODUCTS.

SERVICE POLICY 1. All products returned to OI for service, regardless of warranty
status, must be on a freight-prepaid basis.

2. Until otherwise noted, OI will repair or replace any defective
product within 10 days of its receipt.

3. For in-warranty repairs, OI will return repaired items to buyer
freight prepaid. Out of warranty repairs will be returned with
freight prepaid and added to the service invoice.

SF-MATE USER’S MANUAL

www.sf-mate.info Overton Instruments 3

Table Of Contents

1.0 INTRODUCTION 4

 1.1 Overview 4

 1.2 Highlights 4

 1.3 Solutions 5

 1.4 Specifications 6

2.0 DESCRIPTION 7

 2.1 Overview 7

 2.2 Relay Scanner 7

 2.3 Short-Finder 7

 2.4 Board Layout 8

3.0 CONNECTIONS 9

 3.1 J1 & J2, Relay Scanner 9

 3.2 J3, External Power 9

 3.3 J4, External Source 9

 3.4 J5, Controller Interface 10

 3.5 J6, Signal Consolidated 11

4.0 OPERATION 12

 4.1 Embedded Control 12

 4.1.1 Embedded Configuration 13

 4.1.2 Embedded Programming 14

 4.1.3 Embedded Program Example 15

 4.2 PC Control 16

 4.2.1 PC Programming 17

 4.2.1.1 HyperTerminal 17

 4.2.1.2 Virtual Instrument Panel 18

 4.2.1.3 PC Programming Example 19

APPENDIX A. SERIAL COMMAND SET 21

APPENDIX B. SCHEMATIC 22

APPENDIX C. MECHANICAL DIMENSIONS 23

SF-MATE USER’S MANUAL

1. Introduction

1.1 Overview

The SF-MATE (or Short-Finder), is a unique test instrument that adds ICT capability to
Functional Test equipment. Rather than spending thousands of dollars to test all nodes
on a PCB, the SF-MATE limits the number of checks to those defined as “critical” test
points. For example, during a typical assembly process, a PCB can receive inadvertent
“shorts” in the power section. By verifying certain test points are “short free” (prior to
applying power to the PCB), the SF-MATE can prevent damage to the DUT, adjoining
test equipment and possible injury to the test Operator.

The SF-MATE has 8 input channels that are connected to a special Ohm meter circuit.
After a channel is selected, a constant current is supplied to the device-under-test and a
voltage is measured that is proportional to the resistance. The Ohm meter limits the
current source to 1mA, and the open-circuit voltage is just 200mV (which is less than
the nominal turn-on voltage for most PN junctions). When the input exceeds a certain
level, the SF-MATE outputs a digital bit that indicates a short .

1.2 Highlights

www.sf-mate.info Overton Instruments 4

BENEFITS APPLICATIONS FEATURES

• A flexible, low-cost alter-

native to traditional ICT
test equipment

• Functions both as a

Short-Finder and Voltage
Scanner

• Can be used in fully auto-

mated test equipment

• Great for embedded solu-

tions - place inside me-
chanical test fixtures,
instrument boxes or rack-
mount enclosures

• Functional Test solutions

• Automated Test Systems

• QA/QC Quality Control

• OEM Test Instruments

• Verify “key” test points

in <10msec

• 8 DPDT relays isolate

measurement

• LED’s indicate on all

active relay channels

• USB interface or em-

bedded control

• Low cost

• Compact size

SF-MATE USER’S MANUAL

1.3 Solutions

www.sf-mate.info Overton Instruments 5

Embedded
Control

SF-MATE
8-CH, SHORT-CIRCUIT

M E A S U R E M E N T M O D U L E

USB
Controller
Interface

PC
Control

Micro-MATE
Embedded
Test Controller

External
Instrument

Input
Channels

Device-Under-Test

Digital Multi-Meter

GUI
Interface

SF-MATE USER’S MANUAL

www.sf-mate.info Overton Instruments 6

1.4 Specifications

Relays 9

Relay type DPDT (Form C)

Coil Voltage +5Vdc

Nom. Switching Capacity 0.3 A, 125 V AC (Resistive Load)
1 A, 30 VDC (resistive load)

Max. Switching Voltage 110 VDC, 125 VAC

Max. Switching Current 1A

Contact resistance 100mΩ max

Relay lifetime 100,000,000 operations

Actuation time 4ms max operate or release

Relays (K1-K9)

Source voltage 200mV

Max Source Current 1mA

Continuity Threshold 4 ohms

Short Flag A high, TTL level

Power supply +5VDC ±10%, 500mA min.

Operating temperature 0 to +70°C

Operating humidity 5% to 95% non-condensing

Dimensions 2.0” x 4.0”

Weight

General

Short Detector Circuit

SF-MATE USER’S MANUAL

www.sf-mate.info Overton Instruments 7

2. Description

2.1 Overview

The SF-MATE performs two separate functions, (1) a Relay Scanner and (2) Short-
Finder. A simplified block diagram is shown below to highlight key circuits.

2.2 Relay Scanner

Eight DPDT Form C relays (K1 - K8) are bussed together on the “normally-open” side
and are connected to the Short Sensor circuit via K9. The relays (K1- K9) are all gen-
eral purpose (+5V coil voltage), with a nominal switch rating of 30Vdc @ 1A (125Vac @
0.3A). Cycle time for a single relay channel is 8msec (cycle time combines both set
and release time). When relay K9 is active, the Relay Scanner can be used to route
signals to external test equipment.

2.3 Short-Finder

When the Short Sensor measures an impedance of ~4 ohms it produces a logic “high”
output. A single measurement can take place in 2msec, or “scan and measure” all 8
channels in 80msec (includes relay settling time).

Ext
Relay

K9

Short
Sensor

8 CH
Relay Array
K1 - K8

8

J4

J1 & J2

5V

J3

J5

CONTROL
INTERFACE

EMBEDDED
INTERFACE

USB
INTERFACE
(OPTIONAL)

RELAY
INTERFACE

EXTERNAL
SOURCE

5V POWER

SF-MATE

SF-MATE USER’S MANUAL

www.sf-mate.info Overton Instruments 8

2.4 Board Layout

LED to indicate
active circuit.

Convenient GND
test point.

Complete control
of the SF-MATE is
provided through
an optional USB
module. Or, for
embedded control
a simple 10-pin
header - J5 is pro-
vided. It uses a
SPI-bus interface.

Connector J6 - con-
solidates the input
channels.

Connector J1 - pro-
vides access to input
channels 0-3.

Connector J2 - pro-
vides access to
input channels 4-7.

Convenient
mounting holes.

Connector J3 - pro-
vides access for a ex-
ternal volt-meter.

Connector J4 - pro-
vide access for ex-
ternal power (+5V).

LED’s to indicate
each active relay.

SF-MATE USER’S MANUAL

www.sf-mate.info Overton Instruments 9

3. Connections

3.1 J1 & J2, Relay Scanner

Access to the Relay Scanner is made possible through
connector J1 & J2. J1 & J2 contains two 8 screw termi-
nal connections (pin assignments are presented in the
table to the right). Each relay has a corresponding
LED, which should turn-on when a relay is active.

3.2 J3, External Power

J3 provides a set of screw terminals that allows con-
nection to the relay array which accepts power from a
fairly well-regulated +5Vdc power source (minimum
500mA). Connect the plus-lead to J3-1, and the nega-
tive (or ground) lead to J3-2. When power is applied
LED-11 should turn-on.

3.3 J4, External Source

J4 provides a set of screw terminals that allows con-
nection to external test equipment or to connect multi-
ple SF-MATE modules together. Connect the plus-lead
to J4-1, and the negative-lead to J4-2. When relay K9
is active, the output of the Relay Scanner is switched to
J4.

Pin Name Relay

J1-1 CH0-HI K1

J1-2 CH0-LO K1

J1-3 CH1-HI K2

J1-4 CH1-LO K2

J1-5 CH2-HI K3

J1-6 CH2-LO K3

J1-7 CH3-HI K4

J1-8 CH3-LO K4

J2-1 CH4-HI K5

J2-2 CH4-L0 K5

J2-3 CH5-HI K6

J2-4 CH5-LO K6

J2-5 CH6-HI K7

J2-6 CH6-LO K7

J2-7 CH7-HI K8

J2-8 CH7-LO K8

Pin Name Dir. Description

1 +5Vdc � A regulated +5Vdc input .

2 GND � Ground

J3

Pin Name Dir. Description

1 Ext. Source (+) � Ext Instrument (+)

2 Ext. Source (-) � Ext Instrument (-)

J4

J1 & J2

SF-MATE USER’S MANUAL

www.sf-mate.info Overton Instruments 10

Pin Name Dir. Description

1 VCC I
A regulated +5Vdc input .
Current should be limited
to roughly 100mA.

2 SCLK I

Part of a 3-wire SPI-Bus,
SCLK synchronizes the
serial data transfer for the
DIN and DOUT signals.

3 RESET\ I
An TTL active-low “input’
signal that causes relays
K1-K8 to open.

4 DIN I

Part of a 3-wire SPI-Bus,
DIN is serial command
and control data for the,
ADC, DAC and DIO cir-
cuits.

5 EXT_SOURCE\ I
An TTL active-low “input’
signal that enables K9 -
External Relay.

6

7 SHORT O

An TTL active-high
“output’ signal that indi-
cates a ‘short-circuit’
condition is present.

8 SF_CS\ I
An TTL active-low “input’
signal that provides a
chip-select for the DIO.

9 DGND I Digital Ground

10 SET\ I
An TTL active-low “input’
signal that causes relays
K1-K8 to close.

J5

3.4 J5, Controller Interface

Control of the SF-MATE is made
possible through connector J5 (a
standard 10-pin dual row header).
A description for the various pins
are provided in the table on the
right. All signals conform to TTL
digital logic levels. For more infor-
mation regarding specific require-
ments for interfacing to the SF-
MATE, p lease v is i t the
“Operating” section.

SF-MATE USER’S MANUAL

www.sf-mate.info Overton Instruments 11

3.5 J6, Signal Consolidated

Access to the Relay Scanner is made possible
through connector J1 & J2. J1 & J2 contains
two 8 screw terminal connections (pin assign-
ments are presented in the table to the right).
Each relay has a corresponding LED, which
should turn-on when a relay is active

Pin Name Relay

1 CH0-HI K1

2 CH0-LO K1

3 CH1-HI K2

4 CH1-LO K2

5 CH2-HI K3

6 CH2-LO K3

7 CH3-HI K4

8 CH3-LO K4

9 CH4-HI K5

10 CH4-L0 K5

11 CH5-HI K6

12 CH5-LO K6

13 CH6-HI K7

14 CH6-LO K7

15 CH7-HI K8

16 CH7-LO K8

17 EXT-HI K9

18 EXT-LO K9

19 +5Vdc

20 GND

J6

SF-MATE USER’S MANUAL

www.sf-mate.info Overton Instruments 12

4. Operation

4.1 Embedded Control

In section 3.1.1 (on the next page), the SF-MATE is shown integrated with other
ETS Series components that collectively form a complete Embedded Test Solu-
tion. The diagram shows the SF-MATE being driven by the Micro-MATE. The
Micro-MATE is a low-cost “Embedded Test Controller”, which stores a special
program that is designed to exercise the device-under-test and generate Go/No-
Go test results. The Micro-MATE also provides a sizable breadboard area to
support the development of custom circuits. Adjacent to the breadboard area is
a series of wire-wrap pins that comprise a goodly amount of general purpose
Digital I/O. The schematic below shows the wire-wrap connections which create
the interface between the Micro-MATE and the SF-MATE (J5, 10-pin header con-
nector).

Actually the SF-MATE can be easily driven by most microcontrollers (including
an ARM, AVR, PIC or even a STAMP). When developing a custom interface for
the SF-MATE, it is recommended the designer start-by reviewing the interface
requirements as outlined in the J5 Table (which is provided in the Connections
section). The next step is to review the SF-MATE schematic, which is provided
in Appendix B. What could be the most challenging aspect of the design effort is
controlling the SPI-bus device. The SF-MATE uses a relay driver chip from
Maxim (part number MAX4820). Details for specific performance and SPI-bus
operation can be found in the device data sheet. Go to the manufacturers web-
site to download said documents.

D
U
T
-M
A
T
E

P
o
w
e
r
C
o
n
tr
o
l
M
o
d
u
le

R
e
la
y
-M
A
T
E
 I
n
te
rf
a
c
e

SF-MATE USER’S MANUAL

www.sf-mate.info Overton Instruments 13

Device-Under-Test

 4.1.1 Embedded Configuration

MICRO-MATE

D
U
T
-M
A
T
E
 I
n
te
rf
a
c
e

EMBEDDED
TEST CONTROLLER

BREAD-BOARD AREA

TCI-MATE
Test Control Interface

12Vdc
POWER
SUPPY

S
F
-M
A
T
E

8
-C
H
 S
h
o
rt
-C
ir
c
u
it

M
e
a
s
u
re
m
e
n
t
M
o
d
u
le

LOCATOR- I I

Mechanica l
Test F ix ture

BED-OF-NAILS

R
e
la
y
-M
A
T
E

S
ig
n
a
l
S
w
it
c
h
in
g

&
 R
o
u
ti
n
g

R
S
4
8
5
 I
n
te
rf
a
c
e

R
S
2
3
2
 I
n
te
rf
a
c
e

S
ig
n
a
l
G
e
n
e
ra
to
r

TEST CONTROL UNIT

Alpha---- ● ONE

24Vdc
POWER
SOURCE

S
F
-M
A
T
E
 I
n
te
rf
a
c
e

SF-MATE USER’S MANUAL

www.dut-mate.info Overton Instruments 14

 4.1.2 Embedded Programming

To build-on the PCB board test example (shown in section 4.1.1), we have con-
structed a demo program using BASCOM. BASCOM is a BASIC language com-
piler that includes a powerful Windows IDE (Integrated Development Environ-
ment), and a full suite of “QuickBASIC” like commands and statements. The
demo program (which is outlined in section 4.1.3), illustrates the ease of control-
ling the SF-MATE via the Micro-MATE microcontroller.

The program starts by initialing the Micro-MATE for proper operation. You will
note that the BASCOM software provides excellent bit-manipulation capabilities,
as evident by the use of the ALIAS statement. The Micro-MATE (P1 port bits)
are assigned unique label names (i.e., SCLK, DOUT), which are used to support
various SF-MATE functions. In the “Main” program section, the Micro-MATE re-
ceives “high level” serial commands from a host PC, parses them and then exe-
cutes accordingly. When (for example), the “SF_SS” command is entered, the
“Sf_short_scan” and “Sf_get_short(sf_str)” subroutines are called. This causes
the SF-MATE to scan all relay channels for shorts, the program then converts the
measurement to an ASCII byte and the results are returned. Next, the “SF_SE?”
command is entered, the program then returns the current status of the External
relay (active or not active, represented by logic “1” or “0”). “

Independent of the microcontroller hardware or programming language you
choose, the program sequence described above will likely resemble the way you
implement your SF-MATE application. For this reason, we suggest that you go
to our website and download the “SF-MATE.zip” file. In the Documents folder will
contain more extensive examples of routines to control the SF-MATE.

SF-MATE USER’S MANUAL

www.sf-mate.info Overton Instruments 15

 4.1.3 Embedded Program Example

' Program: SF-MATE Demo
'
---[Initialization]--
'
$large
$romstart = &H2000
$default Xram

Dim Sf_bit As Bit
Dim A_num, A_byte, A_cnt As Byte
Dim Sf_byte, Sf_cnt, Sf_settle, Sf_status, Sf_num as Byte
Dim S As String * 10, A_resp AS String * 10, A_str AS String * 10
Dim Sf_str As String * 1, Sf_str AS String * 10
Dim A_word as Word
Dim A_val as Single
Dim True As Const 1
Dim False As Const 0

Sclk Alias P1.6 ‘ SPI-bus serial clock
Dout Alias P1.7 ‘ SPI-bus serial data output
Din Alias P1.5 ‘ SPI-bus serial data input
Sf_cs Alias P0.0 ‘ Relay driver chip select
Sf_rst Alias P0.1 ‘ Reset relay driver chip
Sf_set Alias P0.2 ‘ Set relay driver chip
Sf_ext Alias P0.3 ‘ External relay control
Sf_short Alias P0.4 ‘ Short condition

Declare Sub Print_ic ‘ print invalid command
Declare Sub Print_orr ‘ print out-of-range
Declare Sub Print_ur ‘ print under range
Declare Sub Print_ok ‘ print command is OK
Declare Sub Sf_short_scan ‘ check for shorts on all channels
Declare Sub Sf_get_shrot(sf_str As String) ‘ get ascii short byte
Declare Sub Sf_rly_sel(sf_num As Byte, Sf_bit as Bit) ‘ select specific relay

---[Main]--
' In the Main the Operator or Host, is prompted to enter a command. The com-
‘ mand is parsed and then executed if valid. Only two command examples are
‘ shown.

Set Sclk, Dout, Sf_cs, Sf_rst, Sf_set, Sf_ext ‘ Set to logic ‘1’
Do
 Input "Enter command " , S
 S = Ucase(s)
 A_resp = Left(s , 3)
 If A_resp = "SF_" Then
 A_resp = Mid(s , 4 , 2)
 Select Case A_resp

 Case "SS": ' scan relays & chk for shorts

 A_char = Mid(s , 6 , 1)
 If A_char = "?" Then
 Call Sf_short_scan
 Call Sf_get_short(sf_str)
 Print "<" ; Sf_str ; ">"
 Else
 Call Print_ic
 End If

 Case "SE": ' set/get ext relay

 A_char = Mid(s , 6 , 1)
 If A_char = "?" Then
 If Sf_ext = 1 Then A_char = "1"
 If Sf_ext = 0 Then A_char = "0"
 Print "<" ; A_char ; ">"
 Else
 If A_char <> "0" And A_char <> "1" Then Call Print_oor
 If A_char = "0" Then Reset Sf_ext
 If A_char = "1" Then Set Sf_ext
 Call Print_ok
 End If

 Case Else
 Call Print_ic ' invalid command
 End Select
 Else
 Call Print_ic ' invalid command
 End If
 Loop
End

'---[Sub-Routines]--
'
Sub Print_ic ‘ print invalid command
 Print "><"
End Sub

Sub Print_oor ‘ print out-of-range
 Print ">>"
End Sub

Sub Print_ur ‘ print under range
 Print "<<"
End Sub

Sub Print_ok ‘ print command is OK
 Print "<>"
End Sub

 ' Scan 8 relay channels and check short condition
Sub Sf_short_scan
 For Sf_cnt = 0 To 7
 Call Sf_rly_sel(sf_cnt , 1)
 Sf_num = 7 - Sf_cnt
 Sf_byte.sf_num = Sf_short
 Next Sf_cnt
 Call Sf_rly_clr
End Sub

 ' Select specific relay
Sub Sf_rly_sel(sf_num As Byte , Sf_bit As Bit)
 Sf_status = 0
 Sf_status.sf_num = Sf_bit
 Sf_status = Not Sf_status
 Reset Sf_cs
 For Sf_cnt = 7 Downto 0
 Dout = Sf_status.sf_cnt ' serial data out
 Set Sclk
 Delay
 Reset Sclk
 Delay
 Next Sf_cnt
 Set Sf_cs
 Waitms Sf_settle ' settling time
 Sf_status = Not Sf_status
End Sub

 ' Identify shorts & convert to ascii
Sub Sf_get_short(sf_str As String)
 Sf_str = "00000000"
 For Sf_cnt = 7 Downto 0
 Sf_bit = Sf_byte.sf_cnt
 If Sf_bit = 0 Then Sf_char = "0"
 If Sf_bit = 1 Then Sf_char = "1"
 Sf_num = 8 - Sf_cnt
 Mid(sf_str , Sf_num , 1) = Sf_char
 Next Sf_cnt
End Sub

SF-MATE USER’S MANUAL

www.sf-mate.info Overton Instruments 16

PC Control

Control
GUI

HyperTerminal

USB

4.2 PC Control

For those who are more comfortable building traditional PC-based “Automated
Test Equipment” (ATE), the SF-MATE offers many features that are well suited
for that environment as well.

Controlling the SF-MATE from a PC, requires that it be equipped with an optional
USB-MATE module. The USB-MATE module contains a USB bridge-chip and a
PIC microcontroller. On the PC side, the USB bridge-chip receives a special set
of serial commands. On the SF-MATE side, the PIC controller processes the
serial commands and then drives the SF-MATE accordingly. In order to be rec-
ognized by the PC, the USB-MATE module requires a set of Windows’ drivers be
installed. To do so, go to “www.SF-MATE.info”, click “Download”, select the “OI
VCP Interface” file and follow the prompts. The letters VCP stands for “Virtual
COM Port”, and is a method by-which the USB interface can appear to the PC as
a standard serial COM port. With the drivers installed and the USB-MATE con-
nected to the PC, go to the Device Manager (click on Ports) and verify “OI Serial
Interface (COM#)” is included.

The diagram below provides a basic illustration of a PC-driven configuration. As
shown, the SF-MATE relay channels are connected to the outputs of a multiple
output Power Distribution PCB. Prior to applying power to the device-under-test,
the SF-MATE is commanded to “scan for shorts. If no shorts are detected, then
power can be safely applied to the DUT. After DUT power is ON, the SF-MATE
can be commanded to enter external mode, which will the allow the voltage out-
puts from the DUT to be routed to an external instrument for measurement.

Input
Channels

Device-Under-Test

Digital Multi-Meter

External
Instrument

Module Power

+5Vdc

Add a USB Hub/s
to drive multiple
SF-MATEs and/or
other OI instruments

SF-MATE USER’S MANUAL

www.sf-mate.info Overton Instruments 17

 4.2.2 PC Programming

The starting point for developing code to control the SF-MATE, begins with ac-
quainting yourself with its Serial Command Set. The serial commands are a set
(or group) of ASCII characters that originate from the PC and are designed to
instruct the SF-MATE to perform specific functions. The complete serial com-
mand set is detailed in Appendix B. There are two ways to exercise the serial
commands, (1) using HyperTerminal or (2), run our Virtual Instrument Panel soft-
ware (GUI Control).

HyperTerminal is a serial communica-
tions program that comes with the Win-
dows OS and is located in the Accesso-
ries folder. Use the USB cable to con-
nect the PC to the SF-MATE. Run
HyperTerminal and configure the settings
for 19200 bps, 8 data bits, no parity, 1
stop bit and no flow control. Select the
COM port based on the available COM
port as indicated in the Device Manager
(example shown below). Press the
‘Enter’ key and the ‘�’ prompt should
appear on the screen (as demonstrated
in the example on the right). Refer to the
table in Appendix B, to begin to experi-
ment with the serial commands.

 4.2.1.1 HyperTerminal

�

� SF_ID?
<SF_MATE v0.1>

� SF_MC
<>

� SF_SS?
<00000000>

 4.2.1.2 Virtual Instrument Panel

SF-MATE USER’S MANUAL

www.sf-mate.info Overton Instruments 18

The Virtual Instrument Panel (or Control GUI), removes the hassle of “manually “
typing ASCII commands and provides the User a more efficient method to inter-
act and control the SF-MATE. Download the panel from our website at www.sf-
mate.info, click on downloads and select “SF-Matexxx.exe”.

First Step: The User must
select a COM Port. Refer to
the Device Manage to iden-
tify an available COM port.

Second Step: Push the Initialize
button. This will cause the module
to initialize itself and attempt to
establish a communications link.

The ‘Ext Sw’ switch enables
the external relay.

The ‘Channel’ switch enables
an individual channel relay.

The ‘CH Mode’ switch selects
‘SCAN’ or ‘SINGLE’

The ‘Trigger’ function updates
the switch settlings.

The ‘STATUS’ message box
summarizes results of the
serial commands.

The ‘Relay Channel’ func-
tion selects an individual
relay channel (1 to 8).

Third Step: After initializing, the module
should send back a unique ID code. If no
response has occurred within 10 seconds,
the program will time-out , and generate a
No Response message.

The ‘SHORT’ STATUS’
LED’S indicates an
short-circuit condition.

 4.2.1.3 PC Programming Example

SF-MATE USER’S MANUAL

www.sf-mate.info Overton Instruments 19

// SF-MATE programming example in ‘C’
//
// The following program provides a Go/No Go test sequence for testing
// a printed circuit board (the DUT). The test equipment includes a SF-
// MATE, DUT-MATE and a 34401A DMM (equipped with a RS-232
// remote interface). The DUT accepts a +24Vdc input and (in-turn) gener-
// ates +5Vdc (logic) and ±12Vdc (analog) voltages. Before DUT power is
// applied, the SF-MATE is used to verify no shorts exist on the power-rails.
// The DUT-MATE is used to switch power to the device-under-test. After
// power is applied, the SF-MATE is used to route various signals to
// the DMM for measurement. After confirming the DUT input/output
// voltages are within spec., the program also checks other ‘key’ test
// points.
//

#define MSWIN // serial comm libraries from
#define MSWINDLL // www.wcscnet.com

#include <comm.h>
#include <stdlib.h>
#include <stddio.h>

int stat, port=0, a_byte = 0, a_cnt = 0, int idx = 0;
int dut_ch = 0, dut_gain =0, gain_sel = 0;
int dio_bit[10] = 0;

long value = 0, limit = 0;

char dio_byte[10], dir_byte[10], results[64];
char send_data[64], read_data[64];

char scan_shorts[] = "SF_SS?" // scan all channels for shorts
char clear_relays[] = "SF_CR" // clear all channel relays
char select_relay[] = "SF_SR" // select specific relay
char set_ext_relay[] = "SF_SE" // set ext relay On/Off
char get_ext_relay[] = "SF_SE?" // get ext relay status
char sf_master_clear[] = "SF_MC" // master clear
char sf_get_device_id[] = "SF_ID?" // get device ID

char auto_sequence[] = "DT_AS"; // auto DUT power sequence
char set_dut_power[] = "DT_DP"; // set dut power On/Off
char dt_get_device_id[] = "DT_ID?"; // get device ID
char set_breaker_limit[] = "DT_SO"; // set over current breaker limit
char dt_master_clear[] = "DT_MC"; // master clear

main()
{ // initialize COMM ports
 sf_port = OpenComPort(1,256,64); // Open COM 1, SF-MATE
 dt_port = OpenComPort(2,256,64); // Open COM 2, DUT-MATE
 dmm_port = OpenComPort(3,256,64); // Open COM 3, DMM 34401A

 SetPortCharacteristics(sf_port,BAUD19200,PAR_EVEN,
 LENGTH_8,STOPBIT_1,PROT_NONNON);
 CdrvSetTimerResolution(sf_port,1); // 1 msec ticks
 SetTimeout(sf_port,2000); // 2000 ticks = 2 sec time-out period
 FlushReceiveBuffer(sf_port); // clear receiver buffer
 FlushTransmitBuffer(sf_port); // clear transmit buffer

 SetPortCharacteristics(dt_port,BAUD19200,PAR_EVEN,
 LENGTH_8,STOPBIT_1,PROT_NONNON);
 CdrvSetTimerResolution(dt_port,1); // 1 msec ticks
 SetTimeout(dt_port,2000); // 2000 ticks = 2 sec time-out period
 FlushReceiveBuffer(dt_port); // clear receiver buffer
 FlushTransmitBuffer(dt_port); // clear transmit buffer

 SetPortCharacteristics(dmm_port,BAUD19200,PAR_EVEN,
 LENGTH_8,STOPBIT_1,PROT_NONNON);
 CdrvSetTimerResolution(dmm_port,1); // 1 msec ticks
 SetTimeout(dmm_port,2000); // 2000 ticks = 2 sec time-out period
 FlushReceiveBuffer(dmm_port); // clear receiver buffer
 FlushTransmitBuffer(dmm_port); // clear transmit buffer

 for (a_cnt = 1; a_cnt <= 3; a_cnt++) {
 if (a_cnt == 1) || (a_cnt == 2) {
 if (a_cnt == 1) port = sf_port; // SF-MATE com port
 if (a_cnt == 2) port = dt_port; // DUT-MATE com port

 // Get device prompt
 sprintf (send_data, "%s\r", "");
 PutString(port,send_data); // send CR
 if ((resp_len = GetString(port,sizeof(read_data),read_data)) == 0); {
 printf ("time-out error");
 exit();
 }
 if (strcmp("-> ", read_data)) {
 printf ("prompt error");
 exit();
 } // Get device ID

 if (a_cnt == 1) sprintf (send_data, "%s\r", sf_get_device_id);
 if (a_cnt == 2) sprintf (send_data, "%s\r", df_get_device_id);
 PutString(port,send_data);
 if ((resp_len = GetString(port,sizeof(read_data),read_data)) == 0); {
 printf ("time-out error");
 exit();
 }
 if (a_cnt == 1) sprintf(a_str, %s, "<SF-MATE v0.1>");
 if (a_cnt == 2) sprintf(a_str, %s, "<DUT-MATE01 v0.1>");
 if (strcmp(a_str, read_data)) {
 printf ("device ID error");
 exit();
 } // Master Clear
 if (a_cnt == 1) sprintf (send_data, "%s\r", sf_master_clear);
 if (a_cnt == 2) sprintf (send_data, "%s\r", dt_master_clear);
 PutString(port,send_data);
 }
 else { // Get 34401A ID
 sprintf (send_data, "%s\r", "*IDN?");
 PutString(dmm_port,send_data);
 if ((resp_len = GetString(dmm_port,sizeof(read_data),
 read_data)) == 0); {
 printf ("time-out error");
 exit();
 }
 sprintf(a_str, %s, "HEWLETT-PACKARD,34401A,0,11-5-2");
 if (strcmp(a_str, read_data)) {
 printf ("34401A ID error");
 exit();
 }
 }
 } // Execute test sequence
 test_fail = False;
 for (a_cnt = 1; a_cnt <= 10; a_cnt++) {
 switch (a_cnt) {
 case 1: // Short-Circuit Test
 sprintf (send_data, "%s\r", scan_shorts);
 PutString(sf_port,send_data);
 GetString(sf_port,sizeof(read_data),read_data);
 if (strcmp("<00000001>", read_data)) {
 printf ("Short-Circuit failure - %s", read_data);
 test_fail = True;
 }
 break;
 case 2: // DUT input power Test
 sprintf (send_data, "%s%s\r", set_breaker_limit, "2048");
 PutString(dt_port,send_data); // send DT_OS2048
 sprintf (send_data, "%s%s\r", auto_sequence, "011");
 PutString(dt_port,send_data); // send DT_AS011
 GetString(dt_port,sizeof(read_data),read_data);
 sprintf(a_str, %s%s, "DUT Input Power Test failure - ", read_data);
 if (strcmp(">0<", read_data)==0) {
 printf (a_str, read_data); // short detected
 test_fail = True;
 break;
 }

 4.2.1.3 PC Programming Example cont.

SF-MATE USER’S MANUAL

www.sf-mate.info Overton Instruments 20

 case 3: // DUT Input Power Test - 24Vdc
 sprintf (send_data, "%s%s\r", set_ext_relay,"1");
 PutString(sf_port,send_data); // enable ext relay
 sprintf (send_data, "%s%s\r", select_relay,"11");
 PutString(sf_port,send_data); // select relay channel 1

 sprintf (send_data, "%s\r", "MEAS:VOLT:DC:RANG:AUTO?");
 PutString(dmm_port,send_data); // get reading
 GetString(dt_port,sizeof(read_data),read_data);
 low_limit = 23.0;
 high_limit = 25.0;
 value = atoi(read_data);
 if (value < low_limit) || (value > high_limit) {
 printf ("DUT Input Power Test failed - %d\n", value);
 test_fail = True;
 }
 Break;
 case 4: // DUT +5Vdc Logic Power Test
 sprintf (send_data, "%s%s\r", select_relay,"21");
 PutString(sf_port,send_data); // select relay channel 2

 sprintf (send_data, "%s\r", "MEAS:VOLT:DC:RANG:AUTO?");
 PutString(dmm_port,send_data); // get reading
 GetString(dt_port,sizeof(read_data),read_data);
 low_limit = 4.75;
 high_limit = 5.25;
 value = atoi(read_data);
 if (value < low_limit) || (value > high_limit) {
 printf ("DUT +5Vdc Logic Power Test failed - %d\n", value);
 test_fail = True;
 }
 break;
 case 5: // DUT +12Vdc Analog Power Test
 sprintf (send_data, "%s%s\r", select_relay,"31");
 PutString(sf_port,send_data); // select relay channel 3

 sprintf (send_data, "%s\r", "MEAS:VOLT:DC:RANG:AUTO?");
 PutString(dmm_port,send_data); // get reading
 GetString(dt_port,sizeof(read_data),read_data);
 low_limit = 11.75;
 high_limit = 12.25;
 value = atoi(read_data);
 if (value < low_limit) || (value > high_limit) {
 printf ("DUT +12Vdc Analog Power Test failed - %d\n",
 value);
 test_fail = True;
 }
 break;
 case 6: // DUT -12Vdc Analog Power Test
 sprintf (send_data, "%s%s\r", select_relay,"41");
 PutString(sf_port,send_data); // select relay channel 4

 sprintf (send_data, "%s\r", "MEAS:VOLT:DC:RANG:AUTO?");
 PutString(dmm_port,send_data); // get reading
 GetString(dt_port,sizeof(read_data),read_data);
 low_limit = -12.25;
 high_limit = -11.75;
 value = atoi(read_data);
 if (value < low_limit) || (value > high_limit) {
 printf ("DUT -12Vdc Analog Power Test failed - %d\n", value);
 test_fail = True;
 }
 break;

 case 7: // DUT 32Vac Power Test
 sprintf (send_data, "%s%s\r", select_relay,"51");
 PutString(sf_port,send_data); // select relay channel 5
 sprintf (send_data, "%s\r", "MEAS:VOLT:AC:RANG:AUTO?");
 PutString(dmm_port,send_data); // get reading
 GetString(dt_port,sizeof(read_data),read_data);
 low_limit = 22.0;
 high_limit = 44.0;
 value = atoi(read_data);
 if (value < low_limit) || (value > high_limit) {
 printf ("DUT 32Vac Power Test failed - %d\n", value);
 test_fail = True;
 }
 break;
 case 8: // DUT RTC Oscillator Test - 32.768 kHz
 sprintf (send_data, "%s%s\r", select_relay,"61");
 PutString(sf_port,send_data); // select relay channel 6
 sprintf (send_data, "%s\r", "MEAS:FREQ?");
 PutString(dmm_port,send_data); // get reading
 GetString(dt_port,sizeof(read_data),read_data);
 low_limit = 32767;
 high_limit = 32769;
 value = atoi(read_data);
 if (value < low_limit) || (value > high_limit) {
 printf ("DUT RTC Oscillator Test failed - %d\n", value);
 test_fail = True;
 }
 break;
 case 9: // DUT Heater Element Test - 13.5 ohms
 sprintf (send_data, "%s%s\r", select_relay,"71");
 PutString(sf_port,send_data); // select relay channel 7
 sprintf (send_data, "%s\r", "MEAS:RES:RANG:AUTO?");
 PutString(dmm_port,send_data); // get reading
 GetString(dt_port,sizeof(read_data),read_data);
 low_limit = 12.5;
 high_limit = 14.5;
 value = atoi(read_data);
 if (value < low_limit) || (value > high_limit) {
 printf ("DUT Heater Element Test failed - %d\n", value);
 test_fail = True;
 }
 break;
 case 10: // DUT 0-Ohm Jumper Test
 sprintf (send_data, "%s%s\r", select_relay,"81");
 PutString(sf_port,send_data); // select relay channel 8
 sprintf (send_data, "%s\r", "MEAS:CONT?");
 PutString(dmm_port,send_data); // get reading
 GetString(dt_port,sizeof(read_data),read_data);
 low_limit = 0.0;
 high_limit = 0.0;
 value = atoi(read_data);
 if (value < low_limit) || (value > high_limit) {
 printf ("DUT 0-Ohm Jumper Test failed - %d\n", value);
 test_fail = True;
 }
 break;
 default:
 break;
 }
 if test_fail = True { // turn-OFF DUT power & exit
 sprintf (send_data, "%s%s\r", set_dut_power, "0");
 PutString(dt_port,send_data); // send DT_DP0
 exit();
 }
 else {
 sprintf (send_data, "%s\r", clear_relays);
 PutString(sf_port,send_data); // clear channel relays
 }
 }
 printf("Test Passed\n");
}

SF-MATE USER’S MANUAL

www.sf-mate.info Overton Instruments 21

Appendix A. Serial Command Set

Command Function Response Description

SF_BRn Set baud rate code <n>
Select one of 4 different baud rates by changing -n-
code. 0 = 1200, 1 = 2400, 2 = 9600 & 3 = 19200.
Baud will remain set. Default code is 3 (19200).

SF_BR? Get baud rate code <n>
Get current baud rate code (-n- is the return code 0
to 3).

SF_CR Clear channel relays <>
All relays (excluding Ext), are cleared (non-
energized).

SF_ID? Get module ID <SF-MATE vx.x>
Get module current identification and version num-
ber.

SF_MC Maser Clear <> Reset & initialize the module

SF_SEn Set external relay <>
Activate or disable the External Source relay. The -n-
represents logic state (1 or 0, On or Off).

SF_SE? Get external relay <n>
Get current status of the External Source relay. The -
n- represents logic state (1 or 0, On or Off).

SF_SRnnn Set channel relay <>
First -nn- represents relay channel (00 to 07). Third -
n- represents logic state (1 or 0).

SF_SR? Get channel status <bbbbbbbb>

The results are placed in 8 ASCII bytes (channel 0 is
high-order-byte and channel 7 is low-order-byte).
The -b- represents the channel status (1 or 0, On or
Off).

SF_STnnn Set relay settling time <>

Set channel relay settling-time. The -nnn- repre-
sents a number between 001 to 255 (padded zero’s
are required). The timing is stated in milliseconds
and the default setting is 10msec.

SF_ST? Get relay settling time <nnn> Get current channel relay settling-time

SF_SS? Get short status <bbbbbbbb>

Sequentially scan all relay channels and check for
shorts. The results are placed in 8 Ascii bytes
(channel 1 is high-order-byte and channel 8 is low-
order-byte). The -b- represents the short status (1 =
Short, 0 = No Short).

To facilitate remote control for the SF-MATE, a USB interface is required. When connected to a host
PC, the USB connection appears as a “Virtual Com Port”, which establishes a serial data communica-
tions link between the two. The default protocol is 19200 baud rate, no parity, 1 stop bit and no flow con-
trol. The SF-MATE will respond to a unique set of ASCII serial data commands (listed below). The first
three bytes of the command string starts with the prefix ‘SF_’, followed by a code that represents the
actual command. All commands are upper case sensitive and are terminated with a carriage-return. If
the command is valid, the SF-MATE will return either a ‘<>’, or a bracketed result (i.e. ‘<010>’. If the
SF-MATE receives a carriage-return or line-feed alone (without a command), then a ‘����’ is returned (this
response is a “prompt” to signal the SF-MATE is ready). If the SF-MATE detects an incorrect command
then one of three error symbols will be generated, (1) invalid command then a ‘><’ is returned, (2) a
command that is out-of-limits then a ‘>>’ is returned, and (3) a command that prematurely times-out then
a ‘<<‘ is returned. In some cases the error symbol will include a bracketed result (i.e. ‘>1<’), which de-
fines a specific error code.

SF-MATE USER’S MANUAL

www.sf-mate.info Overton Instruments 22

Appendix B. Schematic

SF-MATE USER’S MANUAL

www.sf-mate.info Overton Instruments 23

Appendix C. Mechanical Dimensions

2.000
1.800

0.200
0.000

0
.0
0
0

0
.2
0
0

3
.8
0
0

4
.0
0
0

4-40 (x4), Hex
Pan Head Screws

